a2 United States Patent

US009436386B2

10) Patent No.: US 9,436,386 B2

White 45) Date of Patent: Sep. 6, 2016

(54) SHARED REFERENCE COUNTERS AMONG (58) Field of Classification Search
A PLURALITY OF VIRTUAL STORAGE CPC ... GOG6F 3/06; GOGF 3/064; GOGF 9/455;
DEVICES GOGF 9/46

(71) Applicant: Scale Computing, Inc., Indianapolis,
IN (US)

(72) Inventor: Philip Andrew White, San Francisco,

CA (US)

(73) Assignee: Scale Computing, Inc., Indianapolis,
IN (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 140 days.

(21) Appl. No.: 14/318,414

(22) Filed: Jun. 27, 2014

(65) Prior Publication Data

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0225376 A1* 9/2011 Hasting GOG6F 9/3851

711/154
* cited by examiner
Primary Examiner — Yong Choe
(74) Attorney, Agent, or Firm — Zilka-Kotab, PC
57 ABSTRACT

A system, method, and computer program product are
provided for implementing shared reference counters among
a plurality of virtual storage devices. The method includes
the steps of allocating a first portion of a real storage device

US 2015/0378931 Al Dec. 31, 2015 ? Lo .
e to store data, wherein the first portion is divided into a
(51) Int.CL plurality of blocks of memory and allocating a second
GO6F 12/10 (2016.01) portion of the real storage device to store a plurality of
GO6F 3/06 (2006.01) reference counters that correspond to the plurality of blocks
GO6F 9/455 (2006.01) of memory. The reference counters may be updated by two
GOG6F 9/46 (2006.01) or more virtual storage devices hosted in one or more nodes
(52) US. CL to manage the allocation of the blocks of memory in the real
CPC ..o GO6F 3/06 (2013.01); GO6F 9/455 storage device.
(2013.01); GO6F 9/46 (2013.01); GO6F 3/064
(2013.01) 17 Claims, 9 Drawing Sheets
Node § 21000} Node 1 210(1)
Block Engine Daemon 350 Block Engine Daemon 35C
y 'L SRR N N O N O I O B f
POU Peer PO Faer < A oo POU Peer POU Pear
RSD Proxy RSD Proxy i \/;} 0 VS‘EEJ | v RSD Proxy RSD Froxy
I i
i __,,/ . » T
¥ ¥ %
5D 0 RS0 1 RS0 2 RS0 3 RSD O RSO 1 RS0 2 RED 3
RS0 Locad RS Local RSD Ramote RS Femote RED Remate G0 Remote RED Looal RED Local
i Manager 10 Manager FOU Paer FOU Peer PO Poar FRU Peer 10 Manager 10 Manager
A & EY X B

21401}

U.S. Patent Sep. 6, 2016 Sheet 1 of 9 US 9,436,386 B2

100

Allocate a first portion of z first real slorage device {o slore dala,
the first portion divided into a plurality of blocks of memaory
102

Allocate a second portion of the real storage device o slore a
piurality of reference counters that correspond {o the plurality of
blocks of memory
104

Fig. I

U.S. Patent Sep. 6, 2016 Sheet 2 of 9 US 9,436,386 B2

Cluster 200
Node 210(0)
Processor Memaory
211 212
NiC R&D 0 R&D_1 RSD n
213 21440 214(%) - e 214(m)
Node 210(1)
Node 210(J}

Fig. 2

US 9,436,386 B2

Sheet 3 of 9

Sep. 6, 2016

U.S. Patent

onm
MIOMIB N
| i SIBMDIEL
llllllllllllll +(.|(.||Ill|lililiTllllIlilililllllllllilililllllllilililll
m W BIBMYOS
w;ss:sssglﬁ sssssssssssssss ¥ T T y T ¥ oTTTTTT ™
i
]
| TiE TE [0121E |
! i
! i
n TTE wasAs mcxé calg) MmaI I
Mt immi mmm mms mmm mms mmm smms e smms mem emms mmm emms mmm mmr .Hl. mmm tmms mmm amms mmm mms mmm mms mmm cmms mmm cmms mmm tmma mmm smms mmm smmi mmm F mmm mms mmm mms mmm mms mmm smms mmm emms mmm mms mmm mms mmm cmmn cmma mmm omm
S e A
]] - iy ..u.. ,.
| : —
! ““ _ “" i " TOT aoeds [ouwigy
———— i EE g R SRy A
“ m“ it _" 9iy ” Y0 aseds Jasny
| 'y _
“ &7 .Cac:a_a Um%:w\
¥ ¥
»” ZZ% sioiesfio)
TZE I
RTRER ¢ GGT uowseg
TTHRE A LOI00Y A alBUT ¥oHg GopysAS

US 9,436,386 B2

Sheet 4 of 9

Sep. 6, 2016

U.S. Patent

[A Aan ms mam m mAs Ams REa tams ARR A An lAas AAR RS AAs AW ARA LA AR LAl AR AR AAR (RS AAR \Aml ARA Gams ARn tams an ans

o e o rw m omr s ew s e e o= s evw s e em orm mww e o= e e o rw o= Eew s e

2oL WelD 39

<YL JBAHC] oG

9oL OHENMIA

GO sUIsy

$3E
iy

LOL SO 1seng

G198 A

g§ 8Ly

&

PE suiBum GsA

TCT 1ebeuepy O

o4t J8ndag gg

TGE soway 39

5%

ucwee] auifug ¥yooig

US 9,436,386 B2

Sheet 5 of 9

Sep. 6, 2016

U.S. Patent

Ewie

p s

-4

%

k 4

spbeueiy Of

safiuepy O

1984 N

084 NAd

Nl

007 (1S

SHOWDY (154

¢ a3y z sy L a8y 0 asH
-y F:
A0k (ISH AX0ld GSH z aSA

#82d f1d

99 N

F-

-

2

¥

Bog Nad

128 N

JeBRUBIN O

ssbeusin O

DIOWEY GSH

GOSN aSH

(2007 OS5+

12007 05

€ 13y z agy | asy 0 sy
B
A

L USA 0 GSA

AXOicd (1GM

A%Od 35¥

984 Ndd

Lad ndd

i

-3

&f ucweea suibul ¥ooig

y

{11012 & SpoN

0

T uocwee swbug yooig

Oi0LE G °9PON

U.S. Patent Sep. 6, 2016 Sheet 6 of 9 US 9,436,386 B2

214

&

Header 510
Reference Counter Table 520
530{0) 530{1)

530{ -1
Fig. 54
355(0) 355(1)
1 1
551 — 552 —
AN AN
Software
Hardware

U.S. Patent Sep. 6, 2016 Sheet 7 of 9 US 9,436,386 B2

800

Receive a request o aliocale space in a virtual slorage device
602

Allocate a block of memaory in a real slorage device
804

Map the block of memory in the real siorage device {0 a
corresponding block of memory in the virtual storage device
608

Increment a value stored in a reference counter assodciated with
the block of memory in the real slorage device
808

Fig. 64

U.S. Patent Sep. 6, 2016 Sheet 8 of 9 US 9,436,386 B2

Receive g request {o deallocate space in a virtual storage device
852

Update the mapping tabie for the virtual storage device o
remove the reference between a block of memory in a real
storage device and a corresponding block of memory in the

virtual storage device
6854

Descrement a value stored in a reference counter associated with
the block of memory in the real storage device
656

Fig. 68

U.S. Patent Sep. 6, 2016 Sheet 9 of 9 US 9,436,386 B2

700

&

CENTRAL
PROCESSOR
01

MAIN MEMORY
04

INPUT DEVICES
712

SECONDARY
STORAGE
710

GRAPHICS
PROCESSOR
708

DISPLAY

08

Fig. 7

US 9,436,386 B2

1
SHARED REFERENCE COUNTERS AMONG
A PLURALITY OF VIRTUAL STORAGE
DEVICES

FIELD OF THE INVENTION

The present invention relates to virtual machines, and
more particularly to a technique for sharing reference coun-
ters among a plurality of virtual storage devices.

BACKGROUND

Reference counting refers to a technique for tracking a
number of references (i.e., pointers or handles) to a particu-
lar resource of a computer system. For example, a portion of
memory in system RAM (Random Access Memory) may be
allocated to store an instantiation of an object associated
with an application. A handle to that object is stored in a
variable and a reference count for the object is set to one.
The reference count indicates that there is one variable in
memory that refers to the object via the handle. If the handle
is copied into another variable, then the reference count may
be incremented. If the variable storing the handle is over-
written, then the reference count may be decremented. Any
resource having a reference count of zero can be safely
reallocated because there is no longer any active reference
that points to that resource.

Some systems may include a resource that is implemented
as a block device. A block device includes a number of
blocks of non-volatile memory. Hard disk drives, optical
drives, and solid state drives are all examples of hardware
devices that can be implemented as a block device. When an
operating system allocates a block of the block device to a
particular process or processes, the operating system also
typically allocates space in system RAM to store reference
counters associated with the block.

Some contemporary systems may implement a hypervisor
on a node along with one or more virtual machines. Virtual
machines are logical devices that emulate shared hardware
resources connected to the node. In other words, two or more
virtual machines may be implemented on the same node and
configured to share common resources such as a processor,
memory, or physical storage devices. The hypervisor may
implement one or more virtual storage devices that emulate
a real storage device for the virtual machines. The virtual
storage device may contain a plurality of blocks of memory
that are stored in one or more physical storage devices
connected to the node. Contiguous blocks on the virtual
storage device may refer to non-contiguous blocks on one or
more physical storage devices. When reference counting is
used in conjunction with the virtual storage devices, the
reference counters associated with the virtual storage device
may be stored in the RAM.

It will be appreciated that many systems that implement
virtual machines include a plurality of nodes connected via
a network, each node including one or more virtual
machines. In such systems, multiple nodes may include
virtual storage devices that can refer to the same blocks of
data in the physical storage devices coupled to the nodes. It
will be appreciated that implementing a garbage collection
algorithm using reference counters in such systems may be
difficult because one node may keep a reference counter for
a block of a physical device that is also mapped to a block
of another virtual storage device on another node. Thus, in
order to ensure that a block of memory in the physical
storage device is not prematurely overwritten, the nodes will
need to implement a protocol for determining when blocks

10

20

25

30

35

40

45

50

55

60

65

2

of the physical storage devices may be deallocated. Alter-
natively, a block of memory in the physical storage device
can be restricted to only be mapped to a single virtual
storage device, but such a restriction may make the system
inefficient by requiring multiple redundant copies of a block
of data when two or more virtual storage devices refer to the
same block of data. Thus, there is a need for addressing this
issue and/or other issues associated with the prior art.

SUMMARY

A system, method, and computer program product are
provided for implementing shared reference counters among
a plurality of virtual storage devices. The method includes
the steps of allocating a first portion of a real storage device
to store data, wherein the first portion is divided into a
plurality of blocks of memory and allocating a second
portion of the real storage device to store a plurality of
reference counters that correspond to the plurality of blocks
of memory. The reference counters may be updated by two
or more virtual storage devices hosted in one or more nodes
to manage the allocation of the blocks of memory in the real
storage device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a flowchart of a method for implement-
ing shared reference counters associated with a plurality of
virtual storage devices, according to one embodiment;

FIG. 2 illustrates a cluster having a plurality of nodes, in
accordance with one embodiment;

FIGS. 3A & 3B are conceptual diagrams of the architec-
ture for a node of FIG. 2, in accordance with one embodi-
ment;

FIG. 4 illustrates the abstraction layers implemented by
the block engine daemon for two nodes of the cluster, in
accordance with one embodiment;

FIG. 5A illustrates the allocation of a real storage device,
in accordance with one embodiment;

FIG. 5B is a conceptual illustration for the sharing of
reference counters among a plurality of virtual storage
devices, in accordance with one embodiment;

FIG. 6A illustrates a flowchart of a method for creating a
new reference to a block of memory in a real storage device,
in accordance with one embodiment;

FIG. 6B illustrates a flowchart of a method for destroying
a reference to a block of memory in a real storage device, in
accordance with one embodiment; and

FIG. 7 illustrates an exemplary system in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented.

DETAILED DESCRIPTION

A system may include a cluster of nodes, each node
configured to host a plurality of virtual machines. The
cluster of nodes is configured such that each node in the
cluster of nodes includes a set of hardware resources such as
a processor, a memory, a host operating system, one or more
storage devices, and so forth. Each node may implement one
or more virtual machines that execute a guest operating
system configured to manage a set of virtual resources that
emulate the hardware resources of the node. Each node also
implements a block engine daemon process that is config-
ured to allocate hardware resources for a set of virtual
storage devices. The block engine daemon communicates
with a set of client libraries implemented within the guest

US 9,436,386 B2

3

operating systems of the virtual machines. The block engine
daemon also implements a real storage device abstraction
layer as well as a virtual storage device abstraction layer.
The real storage device abstraction layer includes a set of
objects corresponding to the one or more physical storage
devices included in the node as well as a set of objects
corresponding to one or more additional storage devices
included in other nodes of the cluster. The virtual storage
device abstraction layer includes a set of objects correspond-
ing to at least one logical storage device accessible by the
virtual machines.

The block engine daemon is configured to track various
parameters related to the storage devices within the cluster.
For example, the block engine daemon maintains data that
identifies a location for each of the storage devices con-
nected to the cluster. The block engine daemon may also
implement a protocol for allocating space in, reading data
from, and writing data to the physical storage devices. The
block engine daemon may also manage a set of reference
counters associated with the real storage devices. The ref-
erence counters may be maintained in a portion of memory
in the real storage devices rather than maintaining reference
counters in the shared memory (i.e., RAM) allocated to the
virtual machines implemented by the nodes. Consequently,
multiple virtual storage devices can transparently share
those reference counters without requiring the various nodes
or virtual machines in the cluster to communicate each
action related to the shared real storage devices to the other
nodes or virtual machines.

FIG. 1 illustrates a flowchart of a method 100 for imple-
menting shared reference counters associated with a plural-
ity of virtual storage devices, according to one embodiment.
Although the method 100 is described in the context of a
program executed by a processor, the method 100 may also
be performed by custom circuitry or by a combination of
custom circuitry and a program. At step 102, a first portion
of a real storage device is allocated to store data. The real
storage device is a block device and the first portion of the
block device is divided into a plurality of blocks of memory.
In the context of the following description, a real storage
device is any physical device capable of storing data in
blocks of memory. For example, real storage devices may
include hard disk drives, optical disc drives, solid state
drives, magnetic media, and the like. The real storage
devices may be connected to a processor via any of the
interfaces well-known in the art such as Serial Advance
Technology Attachment (SATA), Small Computer System
Interface (SCSI), and the like. In the context of the following
description, a virtual storage device is a logical drive that
emulates the real storage device. Virtual storage devices
provide a logical interface for the virtual machines to access
data in one address space that is mapped to a second address
space on one or more real storage devices. Virtual storage
devices may also implement redundant data storage, such as
by storing multiple copies of data in different locations.

In one embodiment, a block engine server implements a
level of abstraction that represents the real storage devices.
The level of abstraction may represent each of the real
storage devices with a real storage device object, which is an
instantiation of a class that includes fields storing informa-
tion related to the real storage device and methods for
implementing operations associated with the real storage
device. The methods may include operations for allocating
a block of memory within the real storage device to store
data, writing data to the real storage device, and reading data
from the real storage device. The block engine server may
also implement a level of abstraction that represents the

20

25

40

45

55

4

virtual storage devices. The level of abstraction may repre-
sent the virtual storage device with a virtual storage device
object, which is an instantiation of a class that includes fields
storing information related to the virtual storage device and
methods for implementing operations associated with the
virtual storage device. For example, the fields may include
a mapping table that associates each logical block of
memory in the virtual storage device with a corresponding
block of memory in the real storage device, a size of the
virtual storage device, current performance statistics for the
device, and so forth. The methods may include operations
for allocating a block of memory within the virtual storage
device to store data, writing data to the virtual storage
device, and reading data from the virtual storage device.

At step 104, a second portion of the real storage device is
allocated to store a plurality of reference counters that
correspond to the plurality of blocks of memory in the first
portion of the real storage device. As used herein, a reference
counter is a number of bits (e.g., 16-bits) that stores a value
associated with a particular block of memory. In one
embodiment, when the value is equal to zero, the corre-
sponding block of memory is available to be allocated for
new data. When the value is greater than zero, the corre-
sponding block of memory has been allocated to store data
for at least one block of memory in at least one virtual
storage device. The reference counters may be updated by
two or more virtual machines hosted in one or more nodes
to manage the allocation of the blocks of memory in the real
storage device. It will be appreciated that a base value of
zero represents a block of memory with no references
associated with any virtual storage devices and that the value
is incremented for each reference to the block that is created,
but any base value may be used to indicate that the block of
memory has no outstanding references and the value may be
incremented or decremented when new references are cre-
ated.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which
the foregoing framework may or may not be implemented,
per the desires of the user. It should be strongly noted that
the following information is set forth for illustrative pur-
poses and should not be construed as limiting in any manner.
Any of the following features may be optionally incorpo-
rated with or without the exclusion of other features
described.

FIG. 2 illustrates a cluster 200 having a plurality of nodes
210, in accordance with one embodiment. As shown in FIG.
2, the cluster 200 includes J nodes (i.e., node 210(0), node
210(1), . . . , node 210(J-1)). Each node 210 includes a
processor 211, a memory 212, a NIC 213, and one or more
real storage devices (RSD) 214. The processor 211 may be
an x86-based processor, a RISC-based processor, or the like.
The memory 212 may be a volatile memory such as a
Synchronous Dynamic Random-Access Memory (SDRAM)
or the like. The NIC 213 may implement a physical layer and
media access control (MAC) protocol layer for a network
interface. The physical layer may correspond to various
physical network interfaces such as IEEE (Institute of Elec-
trical and Electronics Engineers) 802.3 (Ethernet), IEEE
802.11 (WiF1i), and the like. In one embodiment, the memory
212 includes a host operating system kernel, one or more
device drivers, one or more applications, and the like. The
host operating system kernel may be, e.g., based on the
Linux® kernel such as the Red Hat® Enterprise Linux
(RHEL) distribution. It will be appreciated that, although not

US 9,436,386 B2

5

explicitly shown, each node 210 may include one or more
other devices such as GPUs, additional microprocessors,
displays, radios, or the like.

As used herein an RSD 214 is a physical, non-volatile
memory device such as a HDD, an optical disk drive, a solid
state drive, a magnetic tape drive, and the like that is capable
of storing data. The one or more RSDs 214 may be accessed
via an asynchronous input/output functionality implemented
by a standard library of the host operating system or
accessed via a non-standard library that is loaded by the
operating system, in lieu of or in addition to the standard
library. In one embodiment, the host operating system may
mount the RSDs 214 and enable block device drivers to
access the RSDs 214 for read and write access.

The RSDs 214 may implement a file system including, but
not limited to, the FAT32 (File Allocation Table—32-bit) file
system, NTFS (New Technology File System), or the ext2
(extended file system 2). In one embodiment, each RSD 214
may implement logical block addressing (LBA). LBA is an
abstraction layer that maps blocks of the disk (e.g., 512 B
blocks of a hard disk) to a single unified address. The unified
address may be 28-bit, 48-bit, or 64-bit wide that can be
mapped, e.g., to a particular cylinder/head/sector tuple of a
conventional HDD or other data storage space.

The memory 212 may also include a hypervisor that
performs hardware virtualization. In one embodiment,
QEMU (Quick EMUIator) is provided for emulating one or
more VMs on each node of the cluster 200. In such embodi-
ments, each node 210 may be configured to load a host
operating system such as RHEL into the memory 212 on
boot. Once the host operating system is running, the QEMU
software is launched in order to instantiate one or more VMs
on the node 210, each VM implementing a guest operating
system that may or may not be the same as the host operating
system. It will be appreciated that QEMU may generate
VMs that can emulate a variety of different hardware archi-
tectures such as x86, PowerPC, SPARC, and the like.

FIGS. 3A & 3B are conceptual diagrams of the architec-
ture for a node 210 of FIG. 2, in accordance with one
embodiment. As shown in FIG. 3A, the node 210 may
execute a host operating system 311 that implements a
protected mode of operation having at least two privilege
levels including a kernel space 302 and a user space 304. For
example, the host operating system 311 may comprise the
Linux® kernel as well as one or more device drivers 312 and
313 that execute in the kernel space 302. The device drivers
312 enable applications in the user space 304 to read or write
data from/to the RSDs 214 via a physical interface such as
SATA (serial ATA), SCSI (Small Computer System Inter-
face), FC (Fibre Channel), and the like. In one embodiment,
the device drivers 312 are generic block device drivers
included in the host operating system 311. The device driver
313 enables applications to communicate with other nodes
210 in the cluster 200 via a network interface, which may be
wired (e.g., SONET/SDH, IEEE 802.3, etc.) or wireless
(e.g., IEEE 802.11, etc.). In one embodiment, the device
driver 313 is a generic network driver included in the host
operating system 311.

The conceptual diagram in FIG. 3A shows the RSDs 214
and network 370 within the hardware abstraction layer. In
other words, the RSDs 214 and network 370 comprise
physical devices having a physical interface to the processor
211 in the node 210, either directly or indirectly through a
system bus or bridge device. FIG. 3A also illustrates a
software abstraction layer that includes objects and pro-
cesses resident in the memory 212 of the node 210. The
processes may be executed by the processor 211. For

10

15

20

25

30

35

40

45

50

55

60

65

6

example, the host operating system 311, system monitor
(SysMon) 320, Block Engine (BE) Daemon 350, and virtual
machines (VMs) 360 are processes that are executed by the
processor 211.

In one embodiment, the host operating system 311 may
allocate a portion of the memory 212 as a shared memory
315 that is accessible by the one or more VMs 360. The VMs
360 may share data in the shared memory 315. The host
operating system 311 may execute one or more processes
configured to implement portions of the architecture for a
node 210. For example, the host operating system 311
executes the BE Daemon 350 in the user space 304. The BE
Daemon 350 is a background process that performs tasks
related to the block devices coupled to the node 210 (i.e., the
RSDs 214). The SysMon 320 implements a state machine
(SM) 321 and a set of collectors 322 for managing the
instantiation and execution of one or more VMs 360 that are
executed in the user space 304. In addition, the SysMon 320
may be configured to manage the provisioning of virtual
storage devices (VSDs). VSDs may be mounted to the VMs
360 to provide applications running on the VMs 360 access
to the RSDs 214 even though the applications executed by
the VMs 360 cannot access the RSDs 214 directly. In one
embodiment, the SysMon 320 creates 1/O buffers 316 in the
shared memory 315 that enable the VMs 360 to read data
from or write data to the VSDs mounted to the VM 360.
Each VM 360 may be associated with multiple I/O buffers
316 in the shared memory 315. For example, each VSD
mounted to the VM 360 may be associated with an input
buffer and an output buffer, and multiple VSDs may be
mounted to each VM 360.

As shown in FIG. 3B, each instance of the VM 360
implements a guest operating system 361, a block device
driver 362, and a block engine client 363. The guest OS 361
may be the same as or different from the host operating
system 311. The guest OS 361 comprises a kernel 365 that
implements a virtual I/O driver 366 that is logically coupled
to a VSD. Each VSD is a logical storage device that maps
non-contiguous blocks of storage in one or more RSDs 214
to a contiguous, logical address space of the VSD. The VSD
logically appears and operates like a real device coupled to
a physical interface for the guest OS 361, but is actually an
abstraction layer between the guest OS 361 and the physical
storage blocks on the RSDs 214 coupled to the node 210,
either directly or indirectly via the network 370. The guest
OS 361 may execute one or more applications 364 that can
read and write data to the VSD via the virtual I/O driver 366.
In some embodiments, two or more VSDs may be associated
with a single VM 360.

The block device driver 362 and the BE client 363
implement a logical interface between the guest OS 361 and
the VSD. In one embodiment, the block device driver 362
receives read and write requests from the virtual /O driver
366 of the guest OS 361. The block device driver 362 is
configured to write data to and read data from the corre-
sponding I/O buffers 316 in the shared memory 315. The BE
client 363 is configured to communicate with the BE server
352 in the BE Daemon 350 to schedule I/O requests for the
VSDs.

The BE Daemon 350 implements a Block Engine Remote
Protocol 351, a Block Engine Server 352, an I/O Manager
353, and a VSD Engine 354. The Block Engine Remote
Protocol 351 provides access to remote RSDs 214 coupled
to other nodes 210 in the cluster 200 via the network 370.
The BE Server 352 communicates with one or more BE
Clients 363 included in the VMs 360. Again, the BE Client
363 generates 1/O requests related to one or more VSDs for

US 9,436,386 B2

7

the BE Server 352, which then manages the execution of
those requests via either the Block Engine Remote Protocol
351 (for RSDs 214 connected to other nodes 210 accessible
via the network 370) or the I/O Manager 353 (for RSDs 214
connected to the node 210). The /O Manager 353 enables
the BE Daemon 350 to generate asynchronous /O opera-
tions that are handled by the host OS 311 to read from or
write data to the RSDs 214 connected to the node 210.
Functions implemented by the I/O Manager 353 enable the
BE Daemon 350 to schedule 1/O requests for one or more
VMs 360 in an efficient manner.

In one embodiment, the BE Daemon 350 also implements
a VSD Engine 354. The VSD Engine 354 maintains state
and metadata associated with a plurality of VSD objects 355.
Each VSD object 355 may include a mapping table that
associates each block of addresses (i.e., an address range) in
the VSD with a corresponding block of addresses in one or
more RSDs 214. The VSD objects 355 may include various
state associated with a VSD such as a VSD identifier (i.e.,
handle), a base address of the VSD object 355 in the memory
212, a size of the VSD, a format of the VSD (e.g., filesystem,
block size, etc.), and the like.

The VSD Engine 354 may also maintain state and meta-
data associated with a plurality of RSD objects 356. Each
RSD object 356 may correspond to an RSD 214 connected
to the node 210 or an RSD 214 accessible on another node
210 via the network 370. The RSD objects 356 may include
various state associated with the RSDs 214 such as an RSD
identifier (i.e., handle), a base address of the RSD object 356
in the memory 212, a size of the RSD 214, a format of the
RSD 214 (e.g., filesystem, block size, etc.), and the like. The
RSD object 214 may also track errors associated with the
RSD 214.

The VSD objects 355 and the RSD objects 356 are
abstraction layers implemented by the VSD Engine 354 that
enable VMs 360, via the BE Daemon 350, to store data on
the RSDs 214. In one embodiment, the VSD abstraction
layer is a set of objects defined using an object-oriented
programming (OOP) language. As used herein, an object is
an instantiation of a class and comprises a data structure in
memory that includes fields and pointers to methods imple-
mented by the class. The VSD abstraction layer defines a
VSD class that implements a common interface for all VSD
objects that includes the following methods: Create; Open;
Close; Read; Write; Flush; Discard; and a set of methods for
creating a snapshot of the VSD. A snapshot is a data
structure that stores the state of the VSD at a particular point
in time. The Create method generates the metadata associ-
ated with a VSD and stores the metadata on an RSD 214,
making the VSD available to all nodes 210 in the cluster
200. The Open method enables applications in the VMs 360
to access the VSD (i.e., the I/O buffers 316 are generated in
the shared memory 315 and the VSD is mounted to the guest
OS 361). The Close method prevents applications in the
VMs 360 from accessing the VSD. The Read method
enables the BE Server 352 to read data from the VSD. The
Write method enables the BE Server 352 to write data to the
VSD. The Flush method flushes all pending /O requests
associated with the VSD. The Discard method discards a
particular portion of data stored in memory associated with
the VSD.

In one embodiment, two types of VSD objects 355 inherit
from the generic VSD class: a SimpleVSD object and a
RcliableVSD object. The SimpleVSD object is a simple
virtual storage device that maps each block of addresses in
the VSD to a single, corresponding block of addresses in an
RSD 214. In other words, each block of data in the Sim-

20

25

40

45

55

8

pleVSD object is only stored in a single location. The
SimpleVSD object provides a high performance virtual
storage solution but lacks reliability. In contrast, the Reli-
ableVSD object is a redundant storage device that maps each
block of addresses in the VSD to two or more corresponding
blocks in two or more RSDs 214. In other words, the
ReliableVSD object provides n-way replicated data and
metadata. The ReliableVSD object may also implement
error checking with optional data and/or metadata check-
sums. In one embodiment, the ReliableVSD object may be
configured to store up to 15 redundant copies (i.e., 16 total
copies) of the data stored in the VSD. The SimpleVSD
object may be used for non-important data while the Reli-
ableVSD object attempts to store data in a manner that
prevents a single point of failure (SPOF) as well as provide
certain automatic recovery capabilities when one or more
nodes experiences a failure. The VSD Engine 354 may
manage multiple types of VSD objects 355 simultaneously
such that some data may be stored on SimpleVSD type
VSDs and other data may be stored on ReliableVSD type
VSDs. It will be appreciated that the two types of VSDs
described herein are only two possible examples of VSD
objects inheriting from the VSD class and other types of
VSD objects 355 are contemplated as being within the scope
of the present disclosure.

The VSD Engine 354 may also implement an RSD
abstraction layer that provides access to all of the RSDs 214
coupled to the one or more nodes 210 of the cluster 200. The
RSD abstraction layer enables communications with both
local and remote RSDs 214. As used herein, a local RSD is
an RSD 214 included in a particular node 210 that is hosting
the instance of the BE Daemon 350. In contrast, a remote
RSD is an RSD 214 included in a node 210 that is not
hosting the instance of the BE Daemon 350 and is accessible
via a network 370. The RSD abstraction layer provides
reliable communications as well as passing disk or media
errors from both local and remote RSDs 214 to the BE
Daemon 350.

In one embodiment, the RSD abstraction layer is a set of
objects defined using an OOP language. The RSD abstrac-
tion layer defines an RSD class that implements a common
interface for all RSD objects 356 that includes the following
methods: Read; Write; Allocate; and UpdateRefCounts.
Each RSD object 356 is associated with a single RSD 214.
In one embodiment, the methods of the RSD class are
controlled by a pair of state machines that may be triggered
by either the reception of packets from remote nodes 210 on
the network 370 or the expiration of timers (e.g., interrupts).
The Read method enables BE Server 352 to read data from
the RSD 214. The Write method enables BE Server 352 to
write data to the RSD 214. The Allocate method allocates a
block of memory in the RSD 214 for storing data. The
UpdateRefCounts method updates the reference counts for
each block of the RSD 214, enabling deallocation of blocks
with reference counts of zero (i.e., garbage collection).

In one embodiment, two types of RSD objects 356 inherit
from the RSD class: an RSDLocal object and an
RSDRemote object. The RSDLocal object implements the
interface defined by the RSD class for local RSDs 214, while
the RSDRemote object implements the interface defined by
the RSD class for remote RSDs 214. The main difference
between the RSDLocal objects and the RSDRemote objects
are that the I/O Manager 353 asynchronously handles all [/O
between the BE Server 352 and local RSDs 214, while the
BE Remote Protocol 351 handles all I/O between the BE
Server 352 and remote RSDs 214.

US 9,436,386 B2

9

As discussed above, the SysMon 320 is responsible for
the provisioning and monitoring of VSDs. In one embodi-
ment, the SysMon 320 includes logic for generating
instances of the VSD objects 355 and the RSD objects 356
in the memory 212 based on various parameters. For
example, the SysMon 320 may discover how many RSDs
214 are connected to the nodes 210 of the cluster 200 and
create a different RSD object 356 for each RSD 214 dis-
covered. The SysMon 320 may also include logic for
determining how many VSD objects should be created and
or shared by the VMs 360 implemented on the node 210.
Once the SysMon 320 has generated the instances of the
VSD objects 355 and the RSD objects 356 in the memory
212, the BE Daemon 350 is configured to manage the
functions of the VSDs and the RSDs 214.

FIG. 4 is a conceptual diagram of the abstraction layers
implemented by the BE Daemon 350 for two nodes 210 of
the cluster 200, in accordance with one embodiment. A first
node 210(0) is coupled to two local RSDs (i.e., 214(0) and
214(1)) and two remote RSDs (i.e., 214(2) and 214(3)) via
the network 370. Similarly, a second node 210(1) is coupled
to two local RSDs (i.e., 214(2) and 214(3)) and two remote
RSDs (i.e., 214(0) and 214(1)) via the network 370. The
RSD abstraction layer includes four RSD objects 356 (i.e.,
RSD 0, RSD 1, RSD 2, and RSD 3). In the first node 210(0),
RSD 0 and RSD 1 are RSDLocal objects and RSD 2 and
RSD 3 are RSDRemote objects.

The first node 210(0) accesses the first RSD 214(0) and
the second RSD 214(1) via the I/O Manager library that
makes system calls to the host operating system 311 in order
to asynchronously read or write data to the local RSDs 214.
An RSDLocal library is configured to provide an interface
for applications communicating with the BE Daemon 350 to
read or write to the local RSDs 214. The RSDLocal library
may call methods defined by the interface implemented by
the IOManager library. The first node 210(0) accesses the
third RSD 214(2) and the fourth RSD 214(3) indirectly via
a Protocol Data Unit Peer (PDUPeer) library that makes
system calls to the host operating system 311 in order to
communicate with other nodes 210 using the NIC 213. The
PDUPeer library generates packets that include I/O requests
for the remote RSDs (e.g., 214(2) and 214(3)). The packets
may include information that specifies the type of request as
well as data or a pointer to the data in the memory 212. For
example, a packet may include data and a request to write
the data to one of the remote RSDs 214. The request may
include an address that specifies a block in the RSD 214 to
write the data to and a size of the data. Alternately, a packet
may include a request to read data from the remote RSD 214.
The RSDProxy library unpacks requests from the packets
received from the PDUPeer library and transmits the
requests to the associated local RSD objects 356 as if the
requests originated within the node 210.

The BE Remote Protocol 351, the BE Server 352, and the
1/0 Manager 353 implement various aspects of the RSD
abstraction layer shown in FIG. 4. For example, the BE
Remote Protocol 351 implements the RSDRremote library,
RSDProxy library, and the PDUPeer library and the 1/O
Manager 353 implements the RSDLocal library and the
IOManager library. The second node 210(1) is configured
similarly to the first node 210(0) except that the RSD objects
356 RSD 0 and RSD 1 are RSDRemote objects linked to the
first RSD 214(0) and the second RSD 214(1), respectively,
and the RSD objects 356 RSD 2 and RSD 3 are RSDILocal
objects linked to the third RSD 214(2) and the fourth RSD
214(3), respectively.

10

15

20

25

30

35

40

45

50

55

60

65

10

The VSD abstraction layer includes three VSD objects
355 (ie., VSD 0, VSD 1, and VSD 2). In the first node
210(0), VSD 0 and VSD 1 are ReliableVSD objects. In the
second node 210(1), VSD 2 is a ReliableVSD object. It will
be appreciated that one or more of the VSD objects 355 may
be instantiated as SimpleVSD objects, and that the particular
types of objects chosen depends on the characteristics of the
system. Again, the VSD objects 355 provide an interface to
map I/O requests associated with the corresponding VSD to
one or more corresponding I/O requests associated with one
or more RSDs 214. The VSD objects 355, through the Read
or Write methods, are configured to translate the 1/O request
received from the BE Server 352 and generate correspond-
ing I/O requests for the RSD(s) 214 based on the mapping
table included in the VSD object 355. The translated 1/O
request is transmitted to the corresponding RSD 214 via the
Read or Write methods in the RSD object 356.

FIG. 5A illustrates the allocation of an RSD 214, in
accordance with one embodiment. As shown in FIG. 5A, the
RSD 214 includes a header 510, a reference counter table
520, and a plurality of blocks of memory 530(0),
530(1), . . ., and 530(L-1). The header 510 includes various
information such as a unique identifier for the RSD 214, an
identifier that indicates a type of file system implemented by
the RSD 214, an indication of whether ECC checksums are
implemented for data reliability, and the like. The reference
counter table 520 is included in a first portion of the RSD
214 and includes a vector of reference counters, each
reference counter in the vector being associated with a
particular block of memory 530 included in a second portion
of the RSD 214.

In one embodiment, each block of memory 530 is asso-
ciated with a particular reference counter in the vector. A
reference counter may be any number of bits representing an
integer that is incremented each time a reference to the block
of memory 530 is created and decremented each time a
reference to the block of memory 530 is overwritten or
destroyed. A reference refers to the mapping of a block of
memory in a VSD to a block of memory in the RSD 214. In
one embodiment, each reference counter may be 16-bits
wide. If each memory address in the first portion of the RSD
214 refers to 64-bits of data, then a value stored in the
memory identified by a particular address of the reference
counter table 520 will include 4 reference counters associ-
ated with 4 blocks of memory 530 in the second portion of
the RSD 214. In another embodiment, each block of
memory 530 may be associated with two or more reference
counters in the vector. For example, a block of memory 530
may comprise a number of sub-blocks, where each sub-
block is associated with a separate and distinct reference
counter in the reference counter table 520. For example, a
block of memory 530 may comprise 4096 bytes whereas
each reference counter is associated with a 512 byte sub-
block. It will be appreciated that the sizes of blocks and
sub-blocks given here are for illustrative purposes and that
the sizes of blocks and sub-blocks in a particular RSD 214
may have other sizes. For example, each block may be 1 MB
in size and reference counters may be associated with 4096
byte sectors of the drive. In such an embodiment, sub-blocks
of the blocks of memory 530 may be allocated separately to
separate VSDs.

In another embodiment, reference counters may be allo-
cated dynamically as memory of variable size is allocated to
store various objects. When the BE server 352 allocates one
or more blocks of memory 530 in the RSD 214 for an object,
the BE server 352 also assigns an available reference
counter to that object. The reference counter may include

US 9,436,386 B2

11

both a counter (e.g., a 16-bit value) and an address that
identifies the base address for the block(s) of memory 530
associated with the reference counter as well as a number of
contiguous block(s) of memory 530 that are associated with
that reference counter. In this manner, each reference coun-
ter does not refer to a fixed portion of the memory in the
RSD 214 but instead refers to a particular contiguous
allocation of memory in the RSD 214. It will be appreciated
that the number of reference counters required to implement
this system will vary and, therefore, this embodiment may
be more complex to implement and may decrease the
efficiency of memory access operations.

FIG. 5B is a conceptual illustration for the sharing of
reference counters among a plurality of VSDs, in accordance
with one embodiment. A node 210 may include an RSD 214
that is shared by two or more VSDs. The node 210 may
implement one or more VMs 360 as well as a plurality of
VSDs represented by a plurality of VSD objects 355. As
shown in FIG. 5B, a first VSD object 355(0) and a second
VSD object 355(1) are implemented as software constructs
in the memory 315. It will be appreciated that the first VSD
object 355(0) and the second VSD object 355(1) are stored
in the memory 315, which is also a hardware device, but
since the first VSD object 355(0) and the second VSD object
355(1) are virtual devices, they are shown on the software
side of the hardware/software abstraction boundary. A vir-
tual block of memory 551 in the first VSD object 355(0) is
mapped to a corresponding block of memory 553 in the RSD
214(0). Similarly, a virtual block of memory 552 in the
second VSD object 355(1) is mapped to the block of
memory 553 in the RSD 214(0). In other words, the block
of memory 553 in the RSD 214(0) is referenced by two
different VSDs. The first VSD object 355(0) and the second
VSD object 355(1) may be mounted in the same virtual
machine 360 or different virtual machines 360 instantiated
on the node 210. Similarly, the first VSD object 355(0) and
the second VSD object 355(1) may be mounted in different
virtual machines 360 instantiated on different nodes 210
connected via the network 370.

The RSD 214(0) includes at least one reference counter in
the reference counter table 520 (not explicitly shown in FIG.
5B) of the RSD 214(0). As applications are executed by the
VMs 360, references associated with the blocks of memory
in the RSD 214(0) are created or destroyed based on the
instructions of the applications. For example, an application
executing in a first VM 360 may request the allocation of a
block of memory 551 of the first VSD object 355(0) to store
data for the application. The BE client 363 may request the
BE server 352 to allocate the memory in the VSD. The BE
server 352 then requests the allocation of a block of memory
553 in the RSD 214(0) in order to store the data and adds a
pointer corresponding to the allocated block of memory 553
to the VSD object 355(0) that maps the block of memory in
the VSD to the corresponding block of memory in the RSD
214(0). Allocating blocks of memory in this fashion creates
the reference to the block of memory 553. Thus, the refer-
ence counter will be incremented to indicate that a first
reference exists in the system and that the data in the block
of memory 553 should not be reclaimed as part of a garbage
collection routine. Similarly, an application executing in a
second VM 360 may also request the allocation of a block
of memory 552 of the second VSD object 355(1) to store a
copy of the data associated with the block of memory 551.
The BE server 352 may add a pointer corresponding to the
block of memory 553 to the VSD object 355(1) that maps
the block of memory in the VSD to the corresponding block
of memory in the RSD 214(0). Allocating blocks of memory

10

15

20

25

30

35

40

45

50

55

60

65

12

in this fashion creates a second reference to the block of
memory 553. The reference counter is then incremented
again to indicate that there are now two references to the
block of memory 553 in the system.

Sharing reference counters among a plurality of VSDs is
particularly useful when VSDs are copied from one node to
another. For example, reference counters may be used when
snapshots of VSDs are generated and/or when VSDs are
cloned to another node. A snapshot may be created by
copying the mapping table associated with a VSD in the
RAM of that node or another node and incrementing each of
the reference counters associated with that VSD. Reference
counters may also be decremented when a snapshot is
deleted. Similarly, a clone of the VSD may be created, either
directly from the VSD or indirectly based on one or more
snapshots of the VSD, and, when the clone is created, the
reference counters may be incremented.

In one embodiment, complete VSDs, or rather the VSD
objects 355 that represent the VSDs, may be copied in
conjunction with a live migration operation where, for
example, a virtual machine executing on one node is copied
onto another node in order to balance the load among the
plurality of nodes in the system. A copy of the VSD object
355 from the memory 315 may be transmitted from a first
node to a second node and each of the reference counters
corresponding to blocks of memory in the RSD(s) 214 that
are mapped to blocks of memory in the VSD are incre-
mented. Similarly, when a VSD object 355 is destroyed
(e.g., because a virtual machine is terminated), the reference
counters corresponding to blocks of memory in the RSD(s)
214 that are mapped to blocks of memory in the VSD are
decremented.

A primary benefit to storing reference counters on the
RSDs 214 is that copy-on-write operations may be triggered
without the VSDs needing to actively manage the reference
counters. For example, a write operation performed by a
VSD on a first node that causes data to be written to an RSD
on a second node can be handled entirely within the second
node as a copy-on-write operation on the RSD, and a new
RSD address may be returned to the first node in the write
response. Such operation may eliminate one or more round-
trips of message handshaking between nodes via the net-
work in order to manage reference counters. Another benefit
to storing reference counters in the RSDs 214 is that the
VSDs that reference a particular block of memory in the
RSD 214 may be located on different nodes of the system.
A garbage collection routine executed by the host operating
system would typically need to query each node in the
system to determine whether any node had an active refer-
ence to that block of memory in the RSD 214 before
marking that block of memory as available to be allocated to
store new data. However, in the system described above, a
garbage collection routine may simply access the reference
counters in the RSDs 214 included in that node to determine
whether any remote nodes have referenced a particular block
of memory in the RSD 214.

FIG. 6A illustrates a flowchart of a method 600 for
creating a new reference to a block of memory 530 in the
RSD 214, in accordance with one embodiment. Although the
method is described in the context of a program executed by
a processor, the method may also be performed by custom
circuitry or by a combination of custom circuitry and a
program. It will be appreciated that the method 600 may be
performed after the method 100 has been performed in order
to configure the RSD 214 to include the reference counters
and the plurality of blocks of memory 530. At step 602, a
request to allocate space in a VSD to store data is received.

US 9,436,386 B2

13

The request may be generated by the guest OS 361 and
causes the BE client 363 to transmit a request to the BE
server 352 to allocate space in at least one RSD 214 for the
data. At step 604, the BE server 352 allocates a block of
memory 530 in the RSD 214 for the data. At step 606, the
block of memory 530 in the RSD 214 is mapped to a
corresponding block of memory in the VSD. In one embodi-
ment, the BE server 352 transmits a message to the BE client
363 that indicates the block of memory 530 in the RSD 214
has been allocated for the data, and the BE server 352 maps
the block of memory 530 in the RSD 214 to a corresponding
block of memory in the VSD by adding a corresponding
pointer to the VSD object 355. At step 608, a value stored
in a reference counter associated with the block of memory
530 in the RSD 214 is incremented. The incremented
reference counter indicates that a new reference has been
created for the block of memory 530 in the RSD 214.

In one embodiment, the BE server 352 may make a call
to the Allocate method of the RSD object 356 in order to
allocate the space and increment the reference counter. Once
the space has been allocated, the BE server 352 may
increment or decrement the reference counter associated
with that block by making a call to the UpdateRefCounts
method of the RSD object 356. For example, the Updat-
eRefCounts method may be used when a snapshot of the
VSD is created to increment the reference counter or the
UpdateRefCounts method may be used when a snapshot of
a VSD is deleted to decrement the reference counter. Once
the reference counter is decremented to zero (0), then the
block of memory is considered free space and may be
reallocated using the Allocate method of the RSD object
356.

It will be appreciated that the Write method of the RSD
object 356 may cause free blocks in an RSD 214 to be
allocated based on the current reference counter of the block
being written. In one embodiment, the BE server 352 may
make a call to the Write method of the RSD object 356. If
the reference counter associated with the block identified by
the write request is equal to one (1), then the data included
in the write request will be written to the block of the RSD
214 and the reference counter may be incremented. How-
ever, if the reference counter associated with the block
identified by the write request is greater than one (1) (i.e., 2
or more), then a new block in the RSD 214 may be
transparently allocated to store a copy of the data included
in the write request and an RSD address to the new block
may be returned in a response to the write request. The Write
method of the RSD object 356 may be configured in this
manner because a reference count of two or greater indicates
that multiple VSDs (or snapshots of VSDs, etc.) may ref-
erence the same block and, therefore, that block should not
be modified in place. In other words, the RSD object 214
may be configured to allocate new blocks in the RSD(s) 214
to store copies of data based on the value of reference
counters, and such reference counters need not be managed
by the VSDs because the management of the reference
counters is handled entirely within the RSD objects 356.

It will be appreciated that the method 600 may be repeated
each time space in a VSD is allocated to store data or when
a VSD is copied from one node to another node. In the case
where the data is a copy of a block of memory in a different
VSD, the reference counter for the block of memory 530 in
the RSD 214 may simply be incremented and the mapping
table for the different VSD may be updated. In the case
where the data is new data, then a new block of memory 530
in the RSD 214 is allocated for the data.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 6B illustrates a flowchart of a method 650 for
destroying a reference to a block of memory 530 in the RSD
214, in accordance with one embodiment. Although the
method is described in the context of a program executed by
a processor, the method may also be performed by custom
circuitry or by a combination of custom circuitry and a
program. At step 652, a request to deallocate space (e.g., a
request to delete data) in a VSD is received. The request may
be generated by the guest OS 361 and causes the BE client
363 to transmit a request to the BE server 352 to destroy the
reference between the block of memory 530 in the RSD 214
and the corresponding block of memory in the VSD. At step
654, the BE server 352 updates a mapping table in the VSD
object 355 to remove the reference between the block of
memory 530 in the RSD 214 and a corresponding block of
memory in the VSD. In one embodiment, the reference is
removed by updating the mapping table such that a pointer
associated with a base address in the VSD points to either a
different block in that RSD 214 or a different RSD 214 or is
replaced with a null pointer. At step 656, the BE server 352
causes a value stored in a reference counter associated with
the block of memory 530 in the RSD 214 to be decremented.
Again, in one embodiment, the BE server 352 may make a
call to the UpdateRefCounts method of the RSD object 356
in order to decrement the reference counter.

FIG. 7 illustrates an exemplary system 700 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. The system 700
may comprise a node 210 of the cluster 200. As shown, a
system 700 is provided including at least one central pro-
cessor 701 that is connected to a communication bus 702.
The communication bus 702 may be implemented using any
suitable protocol, such as PCI (Peripheral Component Inter-
connect), PCI-Express, AGP (Accelerated Graphics Port),
HyperTransport, or any other bus or point-to-point commu-
nication protocol(s). The system 700 also includes a main
memory 704. Control logic (software) and data are stored in
the main memory 704 which may take the form of random
access memory (RAM).

The system 700 also includes input devices 712, a graph-
ics processor 706, and a display 708, i.e. a conventional CRT
(cathode ray tube), LCD (liquid crystal display), LED (light
emitting diode), plasma display or the like. User input may
be received from the input devices 712, e.g., keyboard,
mouse, touchpad, microphone, and the like. In one embodi-
ment, the graphics processor 706 may include a plurality of
shader modules, a rasterization module, etc. Each of the
foregoing modules may even be situated on a single semi-
conductor platform to form a graphics processing unit
(GPU).

In the present description, a single semiconductor plat-
form may refer to a sole unitary semiconductor-based inte-
grated circuit or chip. It should be noted that the term single
semiconductor platform may also refer to multi-chip mod-
ules with increased connectivity which simulate on-chip
operation, and make substantial improvements over utilizing
a conventional central processing unit (CPU) and bus imple-
mentation. Of course, the various modules may also be
situated separately or in various combinations of semicon-
ductor platforms per the desires of the user.

The system 700 may also include a secondary storage
710. The secondary storage 610 includes, for example, a
hard disk drive and/or a removable storage drive, represent-
ing a floppy disk drive, a magnetic tape drive, a compact
disk drive, digital versatile disk (DVD) drive, recording
device, universal serial bus (USB) flash memory. The

US 9,436,386 B2

15

removable storage drive reads from and/or writes to a
removable storage unit in a well-known manner.

Computer programs, or computer control logic algo-
rithms, may be stored in the main memory 704 and/or the
secondary storage 710. Such computer programs, when
executed, enable the system 700 to perform various func-
tions. The memory 704, the storage 710, and/or any other
storage are possible examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the central processor 701, the graphics processor
706, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the central proces-
sor 701 and the graphics processor 706, a chipset (i.e., a
group of integrated circuits designed to work and sold as a
unit for performing related functions, etc.), and/or any other
integrated circuit for that matter.

Still yet, the architecture and/or functionality of the vari-
ous previous figures may be implemented in the context of
a general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired sys-
tem. For example, the system 700 may take the form of a
desktop computer, laptop computer, server, workstation,
game consoles, embedded system, and/or any other type of
logic. Still yet, the system 700 may take the form of various
other devices including, but not limited to a personal digital
assistant (PDA) device, a mobile phone device, a television,
etc.

Further, while not shown, the system 700 may be coupled
to a network (e.g., a telecommunications network, local area
network (LAN), wireless network, wide area network
(WAN) such as the Internet, peer-to-peer network, cable
network, or the like) for communication purposes.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.

What is claimed is:

1. A method comprising:

allocating a first portion of a real storage device (RSD) to

store data, wherein the first portion is divided into a
plurality of blocks of memory;

allocating a second portion of the RSD to store a plurality

of reference counters that correspond to the plurality of
blocks of memory;

mapping a block of memory in the RSD to a correspond-

ing block of memory in a virtual storage device (VSD);
and

incrementing a value stored in a reference counter asso-

ciated with the block of memory in the RSD.

2. The method of claim 1, wherein the RSD comprises a
device selected from the group consisting of a hard disk
drive, a solid state drive, a tape drive, and an optical disc
drive.

3. The method of claim 1, wherein the VSD comprises a
logical device represented by a data structure that includes
a mapping table that associates blocks of memory in a first
address space with the blocks of memory in the RSD.

4. The method of claim 3, further comprising:

mapping the block of memory in the RSD to a corre-

sponding block of memory in a second VSD; and
incrementing the value stored in the reference counter.

16

5. The method of claim 4, further comprising:

updating the mapping table for the VSD to remove the
reference between the block of memory in the RSD and
the corresponding block of memory in the VSD; and

5 decrementing the value stored in the reference counter.

6. The method of claim 1, further comprising:

receiving a request to allocate space in the RSD to store
data;

identifying at least one reference counter that stores a

10 value equal to zero; and
allocating a block of memory corresponding to the at least
one reference counter to store the data.
7. The method of claim 1, wherein a value stored in a
|5 particular reference counter indicates a number of references

associated with a block of memory in the RSD correspond-
ing to the particular reference counter.

8. The method of claim 7, wherein the number of refer-
ences corresponds to a number of distinct blocks of memory
in one or more VSDs associated with the block of memory
in the RSD corresponding to the particular reference counter.

9. The method of claim 1, further comprising:

copying a virtual storage device (VSD) object from a first

node to a second node; and

20

25 incrementing each reference counter in the RSD associ-
ated with a block of memory in the RSD that is
referenced by a mapping table in the VSD object.

10. The method of claim 1, further comprising:
o deleting a virtual storage device (VSD) object; and

decrementing each reference counter in the RSD associ-
ated with a block of memory in the RSD that is
referenced by a mapping table in the VSD object.

11. A non-transitory computer-readable storage medium
storing instructions that, when executed by a processor,
cause the processor to perform steps comprising:

allocating a first portion of a real storage device (RSD) to

store data, wherein the first portion is divided into a
plurality of blocks of memory;

allocating a second portion of the RSD to store a plurality

of reference counters that correspond to the plurality of
blocks of memory;

mapping a block of memory in the RSD to a correspond-

ing block of memory in a virtual storage device (VSD);
and

incrementing a value stored in a reference counter asso-

ciated with the block of memory in the RSD.

12. The computer-readable storage medium of claim 11,
the steps further comprising:

mapping the block of memory in the RSD to a corre-

sponding block of memory in a second VSD; and
incrementing the value stored in the reference counter.

13. The computer-readable storage medium of claim 12,
the steps further comprising:

35

40

45

> updating the mapping table for the VSD to remove the

reference between the block of memory in the RSD and

the corresponding block of memory in the VSD; and
decrementing the value stored in the reference counter.

6o 14. The computer-readable storage medium of claim 11,

the steps further comprising:
receiving a request to allocate space in the RSD to store
data;
identifying at least one reference counter that stores a
value equal to zero; and
allocating a block of memory corresponding to the at least
one reference counter to store the data.

65

US 9,436,386 B2

17

15. A system comprising:

a real storage device (RSD); and

a processor coupled to the RSD and configured to:

allocate a first portion of the RSD to store data, wherein
the first portion is divided into a plurality of blocks
of memory;

allocate a second portion of the RSD to store a plurality
of reference counters that correspond to the plurality
of blocks of memory;

map a block of memory in the RSD to a corresponding
block of memory in a virtual storage device (VSD);
and

increment a value stored in a reference counter asso-
ciated with the block of memory in the RSD.

16. The system of claim 15, wherein the RSD and the
processor are included in a first node, the system further
comprising a second node including a second RSD and a
second processor configured to:

18

allocate a first portion of the second RSD to store data,
wherein the first portion of the second RSD is divided
into a plurality of blocks of memory; and

allocate a second portion of the second RSD to store a
plurality of reference counters that correspond to the
plurality of blocks of memory of the second RSD.

17. The system of claim 16, the processor further config-

ured to:

copy a virtual storage device (VSD) object from the first
node to the second node;

incrementing each reference counter in the first RSD
associated with a block of memory in the first RSD that
is referenced by a mapping table in the VSD object; and

incrementing each reference counter in the second RSD
associated with a block of memory in the second RSD
that is referenced by the mapping table in the VSD
object.

